Engineered bamboo as reinforcement for structural concrete

Dr Alireza Javadian Karlsruhe Institute of Technology

Problems

Large emission of Green House Gases

Increasing demand for housing

Finite resources

	production (mio. t)	reserves (mio. t)	R-T-P ratio (years)
bauxite	159	25'000	157
lead	3.15	67	21
iron ore	1'340	160'000	119
copper	14.6	470	32
nickel	1.4	62	44
zinc	9.4	220	23
tin	0.26	6.1	23

Construction is responsible for almost **40%** of global carbon emissions

2 Billion new housing units needed by 2100 globally

Construction activity is a major user of the world's **non-renewable resources**.

IS THERE AN ALTERNATIVE?

Availability

Highly Renewable

High Strength

Class	Wall thickness (MPa)	Measured tensile strength (MPa)	Measured MOR (MPa)
	6 to 7	281	209
Class 1	7 to 8	295	207
	8 to 9	285	198
	6 to 7	260	172
	7 to 8	298	180
Class 2	8 to 9	292	162
	9 to 10	280	190
	10 to 11	294	161
	6 to 7	288	172
	7 to 8	290	168
Class 3	8 to 9	285	158
	9 to 10	287	160
	10 to 11	301	168
	6 to 7	324	166
Class 4	7 to 8	320	159
	9 to 10	326	155
	8 to 9	340	159
Class 5	9 to 10	318	153
Class J	10 to 11	303	149
	11 to 12	268	150
	10 to 11	310	165
Class 6	11 to 12	282	162
	12 to 13	263	160
	14 to 15	247	151
	11 to 12	244	138
Class 7	12 to 13	224	127
Class /	16 to 17	203	125
	19 to 20	193	121

Dendrocalamus asper Indonesia

The highest tensile strength of raw bamboo measured is 340MPa.

The lowest tensile strength of raw bamboo measured is 193MPa.

The highest MOR of raw bamboo measured is 209MPa.

The lowest MOR of raw bamboo measured is 121MPa.

```
MOR = -0.78D + 250
E_f = -33D + 14300
E_t = -3620t + 25300
E_t = 18500SD + 6870
E_t = 33600SD + 70.4D + 13080
E_t = 27200SD + 95.1D - 364.6t - 7180
CS = -0.36D + 96.7
CS = -0.22D - 1.30t + 92.8
CS = -0.18D - 1.12t + 21SD + 71
TS = -8.5t + 363
SD = -0.002D - 0.009t + 1.075
```

Statistical modeling

Class	Wall thickness (MPa)	Measured tensile strength (MPa)	Measured MOR (MPa)	Estimated tensile strength (MPa)	Estimated MOR (MPa)
Class 1	6 to 7	281	209	268 to 291	200 to 219
	7 to 8	295	207	290 to 298	201 to 217
	8 to 9	285	198	276 to 289	276 to 289
	6 to 7	260	172	255 to 268	166 to 180
	7 to 8	298	180	291 to 301	175 to 189
Class 2	8 to 9	292	162	289 to 295	155 to 170
	9 to 10	280	190	277 to 283	184 to 197
	10 to 11	294	161	291 to 300	155 to 170
	6 to 7	288	172	282 to 294	166 to 178
	7 to 8	290	168	284 to 296	161 to 174
Class 3	8 to 9	285	158	281 to 288	150 to 166
	9 to 10	287	160	285 to 291	155 to 170
	10 to 11	301	168	296 to 306	164 to 176
	6 to 7	324	166	318 to 329	162 to 175
Class 4	7 to 8	320	159	315 to 324	151 to 167
	9 to 10	326	155	323 to 329	151 to 157
	8 to 9	340	159	333 to 347	152 to 166
	9 to 10	318	153	310 to 327	148 to 157
Class 5	10 to 11	303	149	299 to 310	141 to 156
	11 to 12	268	150	260 to 276	145 to 155
Class 6	10 to 11	310	165	304 to 315	160 to 170
	11 to 12	282	162	277 to 288	155 to 168
	12 to 13	263	160	255 to 269	155 to 167
	14 to 15	247	151	241 to 254	145 to 157
	11 to 12	244	138	240 to 248	130 to 144
	12 to 13	224	127	218 to 230	120 to 133
Class /	16 to 17	203	125	192 to 216	120 to 130
	19 to 20	193	121	186 to 199	119 to 127

Estimated parameters

Production Process

US, China, EU and Singapore

Bamboo Veneer Lumber (BVL[™]); a high performance lightweight sustainable composite synthesized from **bamboo fibres and state-of-the-art binding matrix** based on a patented technology

Tensile Tests

Shimadzu AG-IC 100 kN ASTM D3039-08 for polymer matrix composite materials strain rate: 1 mm/min

Ave. Tensile strength $f_t = 270 \text{ MPa}$

Ave. Young's Modulus = 30 GPa

Flexural Tests

Shimadzu AG-IC 100 kN ASTM D7264-15 for polymer matrix composite materials Four-point-bending

Ave. Flexural strength $f_m = 250$ MPa Ave. Flexural Modulus = 28 GPa

Compression Tests along fiber direction

Shimadzu AG-IC 100 kN ASTM D6641-14 for polymer matrix composite materials

Ave. Compressive strength $\rm f_{c}$ = 145 MPa

BVL[™] Properties

	BVL™	Steel S275	Glulam
Tensile Strength (MPa)	200 to 300	275 to 410	6 to 15
Bending Strength (MPa)	150 to 250	220 to 350	13 to 24
Compressive Strength (MPa)	90 to 150	250 to 350	3 to 6
Elastic Modulus (MPa)	20,000 to 35,000	190,000 to 220,000	8000 to 12000
Density (Kg/m3)	1.10 to 1.30	7.2 to 7.9	0.5 to 0.8

Applications

BVL™ Reinforcement for Concrete

Production of BVC stirrups

Pull-out tests

$$P = \frac{\left(\alpha_{fT} - \alpha_c\right)Tn_{fT}E_c}{n_{fT}(\beta + v_c) + (1 - v_{fT})}$$

$$\beta = \frac{(b^2 + a^2)}{(b^2 - a^2)}$$

$$\sigma_{tmax} = \beta P$$

Estimatio	n of	ther	mal
stresses			

	Sample	Maximum temperature difference (T), °C	Radial pressure (P), MPa	β	Maximum tangential stress (σ), MPa
_	1	22	3.68	1.01	3.72
der	2	27	4.51	1.01	4.56
linc	3	26	4.35	1.01	4.39
ටි	4	24	4.01	1.01	4.06
	5	26	4.35	1.01	4.39
Beam	6	25	4.18	1.01	4.23
	7	25	4.18	1.01	4.23
	8	28	4.68	1.01	4.73
	9	23	3.84	1.01	3.89
	10	22	3.68	1.01	3.72

2030 Agenda for Sustainable Development

Creating sustainable value chains using local resources by creating jobs and employing people 2 RESPONSIBLE CONSUMPTION AND PRODUCTION

green sustainable alternative to steel, concrete and glass

7 AFFORDABLE AND CLEAN ENERGY

Bamboo as :

- Clean source of charcoal
- For biomass for electricity

13 CLIMATE ACTION a great alternative to cement, steel and even timber as a natural carbon sink to fight climate change

11 SUSTAINABLE CITIES AND COMMUNITIES

Engineered Bamboo for affordable housing solutions

Bamboo forest and plantation can help to restore degraded land and Help to balance the ecosystem in the nature

Thank you

<u>Alireza.javadian@kit.edu</u> <u>www.linkedin.com/in/alireza-javadian</u>

